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Abstract—In the smart grid, huge amounts of consumption
data are used to train deep learning models for applications
such as load monitoring and demand response. However, these
applications raise concerns regarding security and have high
accuracy requirements. In one hand, the data used is privacy-
sensitive. For instance, the fine-grained data collected by a smart
meter at a consumer’s home may reveal information on the
appliances and thus the consumer’s behaviour at home. On the
other hand, the deep learning models require big data volumes
with enough variety and to be trained adequately. In this paper,
we evaluate the use of Edge computing and federated learning,
a decentralized machine learning scheme that allows to increase
the volume and diversity of data used to train the deep learning
models without compromising privacy. This paper reports, to
the best of our knowledge, the first use of federated learning for
household load forecasting and achieves promising results. The
simulations were done using Tensorflow Federated on the data
from 200 houses from Texas, USA.
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I. INTRODUCTION

Load forecasting is an essential part of the development of
the smart grid. Long-term load forecasting is deemed neces-
sary for infrastructure planning, while mid-term and short-term
load forecasting are key tasks in system operations [1]. Day-
to-day operational efficiency of electrical power delivery, in
particular, requires an accurate prediction of short-term load
profiles, which is based on collecting and analysing large
volumes of high-resolution data from households. However,
individual short-term load forecasting (STLF) has been proven
to be a challenging task because of profile volatility. In fact,
the electrical load of a house has a high correlation to its
residents’ behaviour, which is too stochastic and often hard to
predict [2].

Benchmarks for state-of-the-art methods [3, 4] have found
that deep neural networks are a promising solution for the
STLF problem at the household level, due to their ability
to capture complex and non-linear patterns. Neural networks
outperform other prediction methods such as Auto Regressive
Integrated Moving Average (ARIMA) and Support Vector Re-
gression (SVR). Nevertheless, applying deep learning models
alone will not lead to significant improvements, as models
tend to suffer from overfitting [5]. An overfitted model is a
model that learned the details of the training data including
the noise, which affects its ability to generalize when applied
to new data. To tackle this issue, it is recommended to
increase the diversity and size of the used data by combining

Fig. 1: Iterative communications between clients and server in Federated
Learning

usage records from different households. Typically, proposed
frameworks [6, 7] assume that all data records are transferred
from smart meters to a centralized computational infrastructure
through broadband networks to train models. Nevertheless, this
assumption raises concerns related to privacy, since the load
profiles reveal a lot of sensitive information, such as device
usage and the household’s occupancy. Sending such detailed
data over networks makes it exposed to malicious interception
and misuse.
To address privacy concerns while still increasing data records’
volume and variety, a new on-device solution was recently
proposed by the Machine Learning community: Federated
Learning (FL) [8]. Federated Learning is a decentralized
machine learning scheme, where each device participates
in training a central model without sending any data. As
illustrated in Fig.1, the server first initializes the model either
arbitrarily or by using publicly available data. Then, the model
is sent to a set of randomly selected devices (clients) for local
training using their data. Each client sends to the server an
update of the model’s weights, which will be averaged and
used to update the global model. This process will be repeated
until the global model stabilizes.

The main purpose of this paper is to evaluate the use of Edge
computing, together with the Federated Learning approach
in the STLF challenge for electricity in households. Edge
computing refers to data processing at the edge of a network as
opposed to cloud or remote server processing. We use Long-
short Term Memory (LSTM) [9], a deep neural network for
forecasting time series, which uses previous observations of
the house’s electrical load to predict future ones. We study



a group of houses that have similar properties (geographical
location, type of building), on a short period of time to avoid
the weather’s fluctuations and seasonality impact. Federated
learning is performed on houses grid Edge equipment. Edge
equipment is usually present at the end of the electrical
distribution system as a smart interface between the customer
and the electric power supply, be it a smart meter or a
more sophisticated equipment. Our contributions in this work
can be summarized as follows: (1) We propose an enabling
architecture for FL using Edge equipment in the smart grid;
(2) We evaluate the potential gain of FL in terms of accuracy
through simulations; and (3) we evaluate the potential network
load gain through numerical results. To these contributions, we
add the gain in privacy leveraged by decentralization and Edge
computing.

The remainder of this paper is structured as follows: Section
II discusses related works focusing on load prediction and
privacy. In Section III, we define the proposed approach
and used methods. Section IV introduces the simulations and
numerical results. Then in Section V we discuss the limitations
and future work. Section VI concludes the paper.

II. RELATED WORK

Many recent research works used deep neural networks,
and particularly Long-short term memory (LSTM) to tackle
the short-term load forecasting challenge. In fact, benchmarks
have proved LSTM’s potential compared to other methods[10,
11], yet the results do not match the level of desired ex-
actitude in terms of Root Mean Square Error (RMSE) and
Mean Average Percentage Error (MAPE). In order to improve
forecasting accuracy, authors in [12] propose to use a variant
of LSTM that is a sequence-to-sequence LSTM, which gives
better results for one-minute resolution data, but no significant
improvement for the one-hour resolution compared to standard
LSTM. Furthermore, other authors [3] consider the problem of
finding the best LSTM network to be a hyperparameter tuning
problem, and use the genetic algorithm to this end. They state
that finding the best combination of window size and number
of hidden neurons in each layer remains a probabilistic task.

Some other works see that the problem is not simply
an neural network architecture problem, and that ability of
generalization of data-driven forecasting models is the real
issue. In fact, many of the proposed models’ accuracy drops
when they are applied to new datasets [4]. Some works
suggest to use complementary data about the weather [13]
or records from the appliances [2]. While the weather has
a real impact on the aggregated electrical consumption, the
individual short-term load is more related to the occupants’
behaviour. However, collecting data from appliances around
each house is an expensive and privacy-intrusive task.

Another approach to enrich the training data is grouping
data from several customers. Authors in [6] use clustering to
group users with similar profiles, hence reducing the variance
of uncertainty within groups. Authors in [7] propose a pooling
technique that increases data’s diversity to overcome the

Fig. 2: Network components and roles

overfitting problem. Nonetheless, these methods are heavily
centralized and are prone to privacy-issues.

Fine-grained consumption data sent over networks is subject
to many privacy threats when leaked through unauthorized in-
terception or eavesdropping [14]. Many efforts were conducted
to protect the users’ identities in the smart grid. For instance,
authors in [15] propose a clustering-based method where each
group of users who are geographically close receive a common
serial number. However this method makes it hard to treat each
client individually because of the anonymity. Other works’
focus is masking the consumption data, where data aggregation
is the most popular method [16, 17], but it goes in opposite
directions with STLF requirements.

In regards to user privacy and prediction accuracy, none of
the aforementioned papers address both of these aspects. In the
proposed work, we suggest to use the Edge Equipment that
compose the Home Area Network (HAN) to carry out oper-
ations related to client selection and training neural network
at the Edge following the federated learning scheme, allowing
the use of data to train a global model without compromising
the resident’s privacy.

III. SYSTEM MODEL

We propose the network architecture shown in Fig.2 with
two main components: a Multi-access Edge Computing (MEC)
server [18] and clients. Clients are houses with Edge equip-
ment which is essentially composed of smart-meters and other
devices in the HAN. FL is used to build a global LSTM-
based model for STLF. The training rounds are orchestrated
by the MEC server and executed by the clients using their
own electrical consumption data. In this section, we explain
in detail LSTM and how it comes to use in the forecasting,
as well as FL and how it is used in our system model.

A. Time series forecasting using LSTM

The prediction of the future electrical load in this work
is achieved through the time series forecasting approach with
LSTM. A time series refers to an ordered sequence of equally-
spaced data points that represent the evolution of a specific
variable over time. Time series forecasting is enabled through
modeling the dependencies between the points of current data
points and historical data, but the accuracy of the predictions



relies heavily on the chosen model and the quality of historical
data points.

LSTM is a recurrent neural network (RNN) that is fun-
damentally different from traditional feedforward Neural net-
works, and more efficient than standard RNNs. Sequence
learning is LSTM’s Forte. It is able to establish the temporal
correlations between previous data points and the current
circumstances, while solving vanishing and exploding gradient
problems that are common in RNNs. Gradient vanishing
means that the norm of the gradient for long-term components
gets smaller causing weights to never change at lower layers,
while the gradient exploding refers to the opposite event [9].
This is achieved through its key components: the memory cell
that is used to remember important states in the past, and
the gates that regulate the flow of information. LSTM has
three gates: the input gate, the output gate and the forget gate.
They learn to reset the memory cell for unimportant features
during the learning process. Almost all state of the art results
in sequence learning are achieved with LSTM and its variants
especially language translation and speech recognition. In the
case of residential STLF, it is expected that the LSTM network
would be able to form an abstraction of some residents’ states
from the provided consumption profile, maintain the memory
of the states, and make a forecast of the future consumption
based on the learnt information.

B. Federated Learning

Federated learning is a form of machine learning where
most of the training process is done in a distributed way
among devices referred to as clients. It was first proposed and
implemented by Google on keyboards of mobile devices for
next word prediction [19]. This approach is ideal for many
cases: 1) When data is privacy sensitive, 2) when data is
large in size compared to model updates, 3) highly distributed
systems where the number of devices is orders of magnitude
larger than nodes in a data center, 4) in supervised training
when labels can be inferred directly from the user. Federated
learning has also proven to be very useful when datasets are
unbalanced or non-identically distributed.

An iteration of federated learning goes as follows : First,
a subset of clients is chosen and each of them receives
the current model. In our case, clients are hosted at Edge
equipment in houses (e.g. smart meters). Clients that were
selected compute Stochastic Gradient Descent (SGD) updates
on locally-stored data, then a server aggregates the client
updates to build a new global model. The new model is sent
back to another subset of clients. This process is repeated until
the desired prediction accuracy is reached. The operations are
detailed in Algorithm 1.

In order to combine the client updates, the server uses
the FederatedAveraging algorithm [8]. First, the initial
global model is initialized randomly or is pre-trained using
publicly available data. In each training round r , the server
sends a global model wr to a subset K of clients who have
enough data records and whose consumption load varies
enough to enrich the training data. This condition was added

to ensure that we have enough variation in terms of data
points to give a representation of the occupants’ regular
consumption. Afterward, every client k in the subset uses
nk examples from its local data. In our case, the volume
is related to how long the smart meter has been generating
data and how many of it is saved locally. The used dataset is
composed of sliding windows with a predetermined number
of look-back steps. SGD is then used by each client k to
compute the average gradient gk, with a learning rate η.
The updated models wk are sent to the server to be aggregated.

Algorithm 1 FederatedAveraging Algorithm. rmax is the max-
imum number of rounds. η is the learning rate and N =

∑
k nk

initialize the model in training round r = 0
while r < rmax do

Select subset K of clients;
for client k in K do

if σ(monthlyload) > threshold then
k receives model wr;
k computes average gradient gk with SGD;
k updates local model wk

r+1 ← wk
r − ηgk;

k sends updated model to server;
end

end
server computes new global model using the equation :
wr+1 ←

∑K
k=0

nk

N wk
r+1;

start next round r ← r + 1;
end

However, the centralized model may not fit all the users’
electrical consumption. A proposed solution to this problem
is Personalization. Personalization is the focus of many appli-
cations that require understanding user behaviour and adapting
to it. It consists on retraining the centralized model using
user-specific data to build a personalized model for each user.
This can be achieved through retraining the model for a small
number of epochs locally using exclusively the user’s data
[20].

Federated learning has fewer privacy risks than centralized
server storage, since even when data are anonymized, the
users’ identities are still at risk and can be discovered through
reverse engineering. The model updates sent by each client
are ephemeral and never stored on the server; weight updates
are processed in memory and are discarded after aggregation.
The federated learning procedure requires that the individual
weight uploads will not be inspected or analyzed. This is still
more-secure than server training because the network and the
server cannot be entrusted with fine-grained user data. Some
data still have to be sent in an aggregated form for billing,
but these data do not reveal many details. Techniques such as
secure aggregation [21] and differential privacy[22] are being
explored to enforce trust requirements.

C. Networking Load Gain
To evaluate the gain in network load in FL contrast to

centralized training, we first define the network load LsC for a



server s in centralized training in Eq. 1 and the network load
in FL LsF in Eq. 2.
Sk−d is the size of data sent by the client k and Sm is the size
of the model. In the centralized training, dk is the number of
hops between client k and the server.

LsC =

N∑
k=1

Sk−d × dk (1)

LsF = Sm ×
rmax∑
r=1

K∑
k=1

dk,r (2)

where dk,r is the number of hops between the client k selected
in round r and the server, and K is the number of users in
each subset.
Using Eq.1 and Eq.2, we define the gain in networking load
as follows :

Gs = 1− LsF /LsC (3)

IV. SIMULATION AND RESULTS

A. Dataset Pre-Processing and Evaluation Method

This research was conducted using data from Pecan Street
Inc.s Dataport site. Dataport contains unique, circuit-level
electricity use data at one-minute to one-second intervals for
approximately 800 homes in the United States, with Photo-
voltaics generation and Electrical Vehicles charging data for a
subset of these homes.[23]. We chose a subset of 200 clients
who have similar properties from this dataset. It is composed
of the same kind of houses (detached-family homes), located
in the same area (Texas). The dataset is composed of records
between January 1st 2019 and March 31st 2019 with a one-
hour resolution data. The weather fluctuations in this period
are low, so the seasonal factor can be ignored in this study. The
data of each client is prepared to be ready for further analysis.
First, we transform the data to be in a scale between 0 and 1.
Then we transform the time series into sliding windows with
look-backs of size 12 and a look-ahead of size 1. Finally, we
split data into train and test subsets (90% for training and
10% for test). We also split the clients into two groups : 180
participating in the federated learning process, and 20 are left
for further evaluation for how well the model can fit non-
participating clients.

We use RMSE and MAPE to evaluate the model’s perfor-
mance with regard to the prediction error. RMSE allows us
to quantify the error in terms of energy, while MAPE is a
percentage quantifying the size of the error relative to the real
value. The expressions of RMSE and MAPE are as follows:

RMSE =

√∑P
i=1(yi − ŷi)2

N
(4)

MAPE =
100%

P

P∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (5)

where ŷi is the predicted value, yi is the actual value and P
is the number of predicted values.

B. Simulations setup

The simulations were conducted on a laptop with a 2,2 GHz
Intel i7 processor and 16GB of memory and NVIDIA GeForce
GTX 1070 graphic card. We used Tensorflow Federated 0.4.0
with Tensorflow 1.13.1 backend.

Hyper-parameter tuning in deep learning models is impor-
tant to obtain the best forecasting performance. However, in
this work, we only focus on evaluating the federated learning
paradigm. Previous work shows performance insensitivity to
combinations of some layers and layer size, as long as we
use multiple layers and that the number of hidden nodes is
sufficiently large [24]. It was also suggested that very deep
networks are prone to under-fitting and vanishing gradients.
Following these rules, the initial model hyper-parameters (e.g
number of layers, and time steps to be considered) were chosen
by random search on a randomly selected client’s data. The
retained model has two LSTM hidden layers composed of
200 neurons each. The loss function used is Mean squared
error and the optimiser chosen is Adam. The model converges
around the 20th epoch and thus we use close values for rounds
and epochs.

C. Numerical Results

1) Evaluated scenarios:
The different scenarios that were evaluated are summarized in
Table I. As explained in the previous section, in each round,
only a subset of clients train the model. We modify the number
of clients in the subset selected in each round, to see the effect
of larger subsets.We also vary the number of epochs of local
training. In all the scenarios, the federated learning algorithm
was run for 20 rounds.

TABLE I: Used scenarios

Scenarios Clients in subset Local Epochs
1 5 1
2 20 1
3 5 5
4 20 5

2) Results for global models:
The evaluated scenarios resulted in global models that are
obtained following the federated learning approach. These
models are evaluated in terms of RMSE and MAPE as shown
in Tables II and III. Null consumption values have been
disgarded when calculating MAPE. Table II summarizes the
results for the participating clients in the different scenarios.
In our case, the load forecast is on a granular level (single
house) and on a short term (1 hour), therefore the values of
MAPE achieved in Table II for various models are reasonable,
and this level of accuracy is anticipated as similar values have
been reported by previous works [24, 25]. These works also
report that the forecasting accuracy tends to be low for short-
term forecasting horizons. One of the most notable things
we notice is that the global model fits some clients better
than others when considering the fact that not all clients have
similar profiles. We also notice that selecting a bigger number
of clients in each round is preferable, but in cases where



sending updates is more expensive in terms of networking, the
difference can be compensated by using more local training
epochs. The results are similar when applied to the set of
clients who did not participate in the training.

TABLE II: Resulting RMSE and MAPE for global models in the considered
scenarios for the 180 participating clients

RMSE MAPE
Scenario Min Max Mean Min Max Mean

1 0.070 2.652 0.605 10.65% 83.35% 41.40%
2 0.045 2.55 0.578 9.18% 87.63% 38.39%
3 0.026 2.652 0.576 9.45% 96.84% 37.43%
4 0.047 2.68 0.583 9.71% 93.74% 38.91%

TABLE III: Resulting RMSE and MAPE for global models in the considered
scenarios for the 20 non-participant clients

RMSE MAPE
Scenario Min Max Mean Min Max Mean

1 0.262 1.024 0.589 15.82% 60.72% 44.98%
2 0.241 0.979 0.550 16.08% 55.34% 40.95%
3 0.229 0.99 0.530 15.78% 53.98% 39.18%
4 0.235 1.004 0.543 16.04% 56.61% 41.15%

3) Behaviour of personalization:
In this section, we study the effect of personalization on the
performance of the models. First we test if re-training the
model locally for the participant clients gives better results.
Then we apply the same thing to the set of clients who did
not participate in the training. The models were retrained
for 5 epochs for each client. Results for the set of clients
participating in the training are summarized in Table IV and
for the non-participating clients in Table V. We notice an
overall improvement of most of the models. For example, the
model 1 has an overall improvement of 5.07% in terms of
MAPE for the participating set of clients and of 4.78% on the
non-participating clients set. However, for some clients, the
performance can not be improved despite retraining, and this,
as we mentioned earlier, is related to the quality of historical
data points. Applying the models to these clients’ consumption
profiles results in very high MAPE, which affects the average
results. These clients should be treated as outliers, nonetheless,
this is beyond the scope of this study.

TABLE IV: Resulting RMSE and MAPE after personalization over 180
clients

RMSE MAPE
Scenario Min Max Mean Min Max Mean

1 0.0 2.47 0.550 8.13% 99.16% 36.33%
2 0.0 2.47 0.551 7.89% 91.23% 36.39%
3 0.0 2.371 0.536 7.64% 88.76% 34.27%
4 0.0 2.375 0.536 8.00% 82.14% 34.14%

To illustrate the improvements on predictions using person-
alization, we randomly selected a client from the participant
set (client 4313) and a client from the non-participant set
(client 8467). We applied the global model 4 and the corre-
sponding personalized models. The actual load profiles and the
predicted profiles are shown in Fig.3 and Fig.4. Both models
fit the overall behaviour of the consumption profiles.

TABLE V: Resulting RMSE and MAPE after personalization for 20 non-
participating clients

RMSE MAPE
Scenario Min Max Mean Min Max Mean

1 0.232 0.905 0.516 18.35% 53.70% 40.20%
2 0.233 0.901 0.516 16.99% 58.68% 40.71%
3 0.235 0.909 0.516 15.79% 54.82% 39.49%
4 0.232 0.907 0.509 15.96% 52.96% 39.01%

Fig. 3: Predictions for next hour consumption for client 4313 who participated
in training the global model 4. Local training for 5 epochs reduced RMSE
from 0.55 kW to 0.388 kW.

We conclude that we can indeed train powerful models for
a population’s consumption profiles using only a subset of
the users forming it. For applications that have high accuracy
requirements, the model can be retrained resulting in a person-
alized model that follows the profile’s curves better, yielding
more accurate predictions. Nonetheless, the predictions ob-
tained with the global model can be a good starting point for
new clients who don’t have enough data for personalization.
4) Gain in network load:

To illustrate the gain in the network load, we can consider the
most basic case where the distance between all the clients and
the MEC server is 1-Hop. The size of the model is 1,9Kb and
the size of the used data is 16Mb. Using Eq.3, the gain in
the scenarios 1 and 3 is 97%, while scenarios 2 and 4 result
in a gain of 90%. This is a significant gain, especially when
considering that the approach could be applied at the scale of
a city or bigger, for example.

V. REMARKS & FUTURE WORK

The feasibility of the proposed approach is dependent on the
capabilities of the edge devices to perform local training. New
IoT devices have sufficient computing hardware to run com-
plex machine learning models, but training a neural network
is very likely to compromise device performance. However,
some lightweight machine learning frameworks have emerged
such as Tensorflow Lite 1 which provides solid ground for
future implementations.
The accuracy of the models, even after personalization, still
varies depending on the user. To improve the results, neural

1https://www.tensorflow.org/lite



Fig. 4: Predictions for next hour consumption for client 8467 who did not
participate in training the global model 4. Local training for 5 epochs reduced
RMSE from 0.8 kW to 0.72kW.

networks should be coupled with other methods, such as
a prior clustering of clients using criteria other than the
geographical proximity. Solving the problem of outliers in this
context should also be investigated.

VI. CONCLUSION

Individual short-term load forecasting is a challenging task
considering the stochastic nature of consumption profiles. In
this paper, we proposed a system model using Edge computing
and federated learning to tackle privacy and data diversity
challenges related to short-term load forecasting in the smart
grid.To the best of our knowledge, this represents one of the
first studies of federated learning in the smart grid context.
Unlike centralized methods, in the proposed system federated
learning uses edge devices to train models, hence reducing
security risks to the ones related to the device only. We
conducted experiments to evaluate the performance of both
centralized and personalized models in federated settings. The
simulations results show that it is a promising approach to
create highly performing models with a significantly reduced
networking load compared to a centralised model, while
preserving the privacy of consumption data.
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